The Institute of Statistical Mathematics
Abstract:If a product deviates from its desired properties in the injection moulding process, its root cause analysis can be aided by models that relate the input machine settings with the output quality characteristics. The machine learning models tested in the quality prediction are mostly black boxes; therefore, no direct explanation of their prognosis is given, which restricts their applicability in the quality control. The previously attempted explainability methods are either restricted to tree-based algorithms only or do not emphasize on the fact that some explainability methods can lead to wrong root cause identification of a product's deviation from its desired properties. This study first shows that the interactions among the multiple input machine settings do exist in real experimental data collected as per a central composite design. Then, the model-agnostic explainable AI methods are compared for the first time to show that different explainability methods indeed lead to different feature impact analysis in injection moulding. Moreover, it is shown that the better feature attribution translates to the correct cause identification and actionable insights for the injection moulding process. Being model agnostic, explanations on both random forest and multilayer perceptron are performed for the cause analysis, as both models have the mean absolute percentage error of less than 0.05% on the experimental dataset.
Abstract:Accurate localization is a challenging task for autonomous vehicles, particularly in GPS-denied environments such as urban canyons and tunnels. In these scenarios, simultaneous localization and mapping (SLAM) offers a more robust alternative to GPS-based positioning, enabling vehicles to determine their position using onboard sensors and surrounding environment's landmarks. Among various vehicle SLAM approaches, Rao-Blackwellized particle filter (RBPF) stands out as one of the most widely adopted methods due to its efficient solution with logarithmic complexity relative to the map size. RBPF approximates the posterior distribution of the vehicle pose using a set of Monte Carlo particles through two main steps: sampling and importance weighting. The key to effective sampling lies in solving a distribution that closely approximates the posterior, known as the sampling distribution, to accelerate convergence. Existing methods typically derive this distribution via linearization, which introduces significant approximation errors due to the inherent nonlinearity of the system. To address this limitation, we propose a novel vehicle SLAM method called \textit{N}atural Gr\textit{a}dient Gaussia\textit{n} Appr\textit{o}ximation (NANO)-SLAM, which avoids linearization errors by modeling the sampling distribution as the solution to an optimization problem over Gaussian parameters and solving it using natural gradient descent. This approach improves the accuracy of the sampling distribution and consequently enhances localization performance. Experimental results on the long-distance Sydney Victoria Park vehicle SLAM dataset show that NANO-SLAM achieves over 50\% improvement in localization accuracy compared to the most widely used vehicle SLAM algorithms, with minimal additional computational cost.
Abstract:Molecular generation plays an important role in drug discovery and materials science, especially in data-scarce scenarios where traditional generative models often struggle to achieve satisfactory conditional generalization. To address this challenge, we propose MetaMolGen, a first-order meta-learning-based molecular generator designed for few-shot and property-conditioned molecular generation. MetaMolGen standardizes the distribution of graph motifs by mapping them to a normalized latent space, and employs a lightweight autoregressive sequence model to generate SMILES sequences that faithfully reflect the underlying molecular structure. In addition, it supports conditional generation of molecules with target properties through a learnable property projector integrated into the generative process.Experimental results demonstrate that MetaMolGen consistently generates valid and diverse SMILES sequences under low-data regimes, outperforming conventional baselines. This highlights its advantage in fast adaptation and efficient conditional generation for practical molecular design.
Abstract:Many existing video inpainting algorithms utilize optical flows to construct the corresponding maps and then propagate pixels from adjacent frames to missing areas by mapping. Despite the effectiveness of the propagation mechanism, they might encounter blurry and inconsistencies when dealing with inaccurate optical flows or large masks. Recently, Diffusion Transformer (DiT) has emerged as a revolutionary technique for video generation tasks. However, pretrained DiT models for video generation all contain a large amount of parameters, which makes it very time consuming to apply to video inpainting tasks. In this paper, we present DiTPainter, an end-to-end video inpainting model based on Diffusion Transformer (DiT). DiTPainter uses an efficient transformer network designed for video inpainting, which is trained from scratch instead of initializing from any large pretrained models. DiTPainter can address videos with arbitrary lengths and can be applied to video decaptioning and video completion tasks with an acceptable time cost. Experiments show that DiTPainter outperforms existing video inpainting algorithms with higher quality and better spatial-temporal consistency.
Abstract:This paper addresses the challenge of energy efficiency management faced by intelligent IoT devices in complex application environments. A novel optimization method is proposed, combining Deep Q-Network (DQN) with an edge collaboration mechanism. The method builds a state-action-reward interaction model and introduces edge nodes as intermediaries for state aggregation and policy scheduling. This enables dynamic resource coordination and task allocation among multiple devices. During the modeling process, device status, task load, and network resources are jointly incorporated into the state space. The DQN is used to approximate and learn the optimal scheduling strategy. To enhance the model's ability to perceive inter-device relationships, a collaborative graph structure is introduced to model the multi-device environment and assist in decision optimization. Experiments are conducted using real-world IoT data collected from the FastBee platform. Several comparative and validation tests are performed, including energy efficiency comparisons across different scheduling strategies, robustness analysis under varying task loads, and evaluation of state dimension impacts on policy convergence speed. The results show that the proposed method outperforms existing baseline approaches in terms of average energy consumption, processing latency, and resource utilization. This confirms its effectiveness and practicality in intelligent IoT scenarios.
Abstract:The rapid accumulation of Electronic Health Records (EHRs) has transformed healthcare by providing valuable data that enhance clinical predictions and diagnoses. While conventional machine learning models have proven effective, they often lack robust representation learning and depend heavily on expert-crafted features. Although deep learning offers powerful solutions, it is often criticized for its lack of interpretability. To address these challenges, we propose DeepSelective, a novel end to end deep learning framework for predicting patient prognosis using EHR data, with a strong emphasis on enhancing model interpretability. DeepSelective combines data compression techniques with an innovative feature selection approach, integrating custom-designed modules that work together to improve both accuracy and interpretability. Our experiments demonstrate that DeepSelective not only enhances predictive accuracy but also significantly improves interpretability, making it a valuable tool for clinical decision-making. The source code is freely available at http://www.healthinformaticslab.org/supp/resources.php .
Abstract:This report provides a comprehensive overview of the 4th Pixel-level Video Understanding in the Wild (PVUW) Challenge, held in conjunction with CVPR 2025. It summarizes the challenge outcomes, participating methodologies, and future research directions. The challenge features two tracks: MOSE, which focuses on complex scene video object segmentation, and MeViS, which targets motion-guided, language-based video segmentation. Both tracks introduce new, more challenging datasets designed to better reflect real-world scenarios. Through detailed evaluation and analysis, the challenge offers valuable insights into the current state-of-the-art and emerging trends in complex video segmentation. More information can be found on the workshop website: https://pvuw.github.io/.
Abstract:The design of Analog and Mixed-Signal (AMS) integrated circuits (ICs) often involves significant manual effort, especially during the transistor sizing process. While Machine Learning techniques in Electronic Design Automation (EDA) have shown promise in reducing complexity and minimizing human intervention, they still face challenges such as numerous iterations and a lack of knowledge about AMS circuit design. Recently, Large Language Models (LLMs) have demonstrated significant potential across various fields, showing a certain level of knowledge in circuit design and indicating their potential to automate the transistor sizing process. In this work, we propose an LLM-based AI agent for AMS circuit design to assist in the sizing process. By integrating LLMs with external circuit simulation tools and data analysis functions and employing prompt engineering strategies, the agent successfully optimized multiple circuits to achieve target performance metrics. We evaluated the performance of different LLMs to assess their applicability and optimization effectiveness across seven basic circuits, and selected the best-performing model Claude 3.5 Sonnet for further exploration on an operational amplifier, with complementary input stage and class AB output stage. This circuit was evaluated against nine performance metrics, and we conducted experiments under three distinct performance requirement groups. A success rate of up to 60% was achieved for reaching the target requirements. Overall, this work demonstrates the potential of LLMs to improve AMS circuit design.
Abstract:Multi-Agent Reinforcement Learning is widely used for multi-robot coordination, where simple graphs typically model pairwise interactions. However, such representations fail to capture higher-order collaborations, limiting effectiveness in complex tasks. While hypergraph-based approaches enhance cooperation, existing methods often generate arbitrary hypergraph structures and lack adaptability to environmental uncertainties. To address these challenges, we propose the Skewness-Driven Hypergraph Network (SDHN), which employs stochastic Bernoulli hyperedges to explicitly model higher-order multi-robot interactions. By introducing a skewness loss, SDHN promotes an efficient structure with Small-Hyperedge Dominant Hypergraph, allowing robots to prioritize localized synchronization while still adhering to the overall information, similar to human coordination. Extensive experiments on Moving Agents in Formation and Robotic Warehouse tasks validate SDHN's effectiveness, demonstrating superior performance over state-of-the-art baselines.
Abstract:As short videos have risen in popularity, the role of video content in advertising has become increasingly significant. Typically, advertisers record a large amount of raw footage about the product and then create numerous different short-form advertisement videos based on this raw footage. Creating such videos mainly involves editing raw footage and writing advertisement scripts, which requires a certain level of creative ability. It is usually challenging to create many different video contents for the same product, and manual efficiency is often low. In this paper, we present VC-LLM, a framework powered by Large Language Models for the automatic creation of high-quality short-form advertisement videos. Our approach leverages high-resolution spatial input and low-resolution temporal input to represent video clips more effectively, capturing both fine-grained visual details and broader temporal dynamics. In addition, during training, we incorporate supplementary information generated by rewriting the ground truth text, ensuring that all key output information can be directly traced back to the input, thereby reducing model hallucinations. We also designed a benchmark to evaluate the quality of the created videos. Experiments show that VC-LLM based on GPT-4o can produce videos comparable to those created by humans. Furthermore, we collected numerous high-quality short advertisement videos to create a pre-training dataset and manually cleaned a portion of the data to construct a high-quality fine-tuning dataset. Experiments indicate that, on the benchmark, the VC-LLM based on fine-tuned LLM can produce videos with superior narrative logic compared to those created by the VC-LLM based on GPT-4o.